NASA CR-159142

FORTRA.

Subroutihes for
Out-of-Cure Solutions
of Large Complex Linear Systems

Elizabeth L. Yip

Boeing Commercial Airplane Company
Seattle, Washington

{NASA-CR-159142) FORTRAN SUBROUTINES FOR N80-14773
OUT-OF-CCORE SCLUTIQNS OF LARGE COMELEX

LINEAR SYSTEMS Final Report (Boeing

Commercial Airplane Co., Seattle) 42 p Unclas
HC A03/MF AO1 CSCL 09B G3/61 46555

Prepared for
Langley Research Center
under contract NAS1-15128

NNASA

National Aeronautics and
Space Administration

November 1979

1.0
20
30
40

50

CONTENTS

SUMM A RY . e e e e
INTRODUCTION e e e e
NOMENCLATURE. i e
DISCUSSION ... e e e e
4.1 Algorithm [(Subroutine ETCGP)
4.2 Remarks on FORTRAN Implementation of Algorithm1
4.3 Numerical Stability of Algorithm,
4.4 Comparison of Algorithm I with Other Approaches
4.5 Algorithm Il (Subroutine).
4.6 Remarks on FORTRAN Implementation of Algorithm I
4.7 Numerical Stability of Algorithm I
COMPUTERPROGRAMUSAGE. i
5.1 Machine and Execution Environment L.
5.2 Operating System e
5.3 TIMINg. ..o o e e
54 Filesand File Format
5.5 USaBe. . o e e e

5.5.1 Using Algorithin I (Subroutine ETCGP)

5.5 2 Using Algorithm 1I (Subroutine ETCSM)

5.5.3 Using the Iterative Refinement Subroutine (ETCIT)...
S.6 Error Messages.t e .

56.1 ErrorMessagesfromETCGP.............

5.6.2 ErrorMessagesfrom ETCSM.........

5.6.3 Error Messages from ETCIT
5.7 Sample Problems. e

571 SampleProblem 1.

§57.2 SampleProblem 2.

REFERENCES e

"RECEDING PAGE RLANK NOT FILMED

35
37
39

1.0 SUMMARY

This document describes the design and usage of two main subprograms using direct
methods to solve large linear complex systems of the form Ax = b, whose coefficient
matrices are too large to be stored in core. In the first main subprobram, the basic idea is
to reduce the matrix to an upper triangular matrix and subsequently solve the problem

by backward substitution. A row interchanging strategy called “threshold pivoting” is
adopted to preserve numerical stability and to minimize disk-transfers. This algorithm does
not yield the usual LU factorization of some row permutation of the coefficient matrix.
The s>cond main subprogram is designed for linear systems with a certain sparse structure,
namely. the matrix can be written as B + D where B is a block-banded matrix, and D has
only a few columns of nonzeros. A variant of the Sherman-Morrison updating formula is
employed in this case. The second main subprogram calls the first main subprogram to solve
B(x.y) = (b,u) where x,y are unknowns, b is the right-hand side of the linear system

(B + D)x =b, and U is the nonzero columns of D.

2.0 INTRODUCTION

This document describes the design and usage of two FORTRAN main subprograms for the
CDC digital computer systems, namely subroutine ETCGP and subroutine ETCSM. These
subroutines were written as part of a research effort investigating unsteady transonic flow.
Reterences 1 through S present a procedure for analyzing the flow about harmonically
oscillating airtoils and wings in the transonic regime. This procedure is based on small per-
turbations. A solution is tormulated using tinite difference techniques which results in a
large set of simultaneous equations, written matrix form as

Ax=b (H

where A is a sparse complex matrix of order equal to the number of mesh points. The
matrix b is 4 complex matrix with the number of colimns equal to the number of modes for
which pressure distributions are to be found. The matrix A may be of order 3,500 for a
practical two-dimensional airfoil.

Numerical solutions to equation (1) were nitially obtained using relaxation techniques.
However. tor a significant range of practical values of Mach number and reduced frequency,
experience showed that relaxation technique« applied to equation (1) failed to converge.
The matrix A in equation (1) does not possess any of well-known properties (e.g.. positive
definiteness, diagonal dominance) which guarantee the convergence of relaxation methods.
However, the physical origin of equation (1) guarantees the existence of a unique solution.
Thus the obvious alternative is a direct solution method, which assumes no properties of
the matrin A other than existence of a unique solution for an equation of the torm of (1)
when any arbitray matrix b is applic.

Out-of-core algorithms have been discussed in standard textbooks of numerical analysis
(e.g. Reterence 6). These algorithms are numerically as stable as the well-known regular
Gaussian elimination, yet they are not designed for efticient execution in modern day
computers. The physical origin of equation (1) makes *"blocking” of the riitrix A an
obvious and attractive data structure. Yet existing “blocked linear ~quation solvers™ at best
assume non-singularity and the well-conditioning of the i-th diagonal sub-block at the i-th
blocked pivotal step (e.g. Reference 7). This property is unnatural and is not based on the
physics of the problem. Out basic algorithm does not require the matrix A to have this
particular property. As stated in the above paragraph. the only property of A it assumes
is non=singularity of the matrix A. It also takes into consideration numerical stability and
computational efficiency. Sections 43 and 44 discuss these advantages in detail,

Th: FORTRAN subroutines described here are applicable to both dense and sparse matrices
that are too large to be stored in core. Thus they are usetul for solving any cquation of the
form of equation (1), in particular in the case when there is no useful properties of the
matrix A to guarantee convergence of any iterative methods. For example. subroutine
ETCGP (as well as the version for real matrices) has been used in different research and
production computer codes at the Boeing Company.

Results of applying the routines of this document together with th program described in
reference 5 are presented in reference 4. The development ot the routines of this document
was in conjunction with work described in references 4, 5, and 8.

The first step in developing the algorithm for solving equation (1) is to partition the
augmented matrix [A|B] into blocks so that it can be considered to have the following

structure: _
Ajy App. .. Ajg By

Azl Ap- - - Agg By

As] Ags Bg|
Figure 1. - Data Structure

Each block is stored as a record in mass storage with the requirement that at least three
blocks can be held in core simultaneously, and the diagonal blocks are square blocks. The
mass storage used should be a random access file (called direct access file in the IBM nomen-
clature).

The methods used in both main subprograms are direct methods. In the first main sub-
program, the basic idea is to reduce the coefficient matrix to an upper triangular system.
In the second main subprogram, the coefficient matrix is assumed to have the for B + D,
where B is a block-banded matrix. and D is a matrix with only a few columns of nonzeros.
A variant of the Sherman-Morrison updating formula is employed.

Features of the two subprograms include options to
o Solve more than one set of right-hand sides
e Control the frequency of pivoting
o Access the submoduli of the main subprograms
e Take advantage of the block sparsity of the coefficient matrix.

In section 3.0 we shall list our symbols and nomenclatures. In section 4.0, we shall discuss
the algorithms in detail, analyze their numerical stabilities, remark on their FORTRAM
implementation and compare our approaches with outer approaches outlined in the liter-
ature. In secion 5.0, we shall discuss in detail the usage of the two subprograms.

A=y
A=A
AT

Upper triangular

matrix

Block profile

matrix

3.0 NOMENCLATURE

A is a matrix, the entry of the i-th row and j-th column is

denoted by 3 i

A is a matrix partitioned into blocks, the block in the i-th
block row and the j-th block column is denoted by Ai, j

The transpose of A

Matrix with all zeros below the diazonal

Matrix of the form:

- _

(where the shaded area indicates non-zero entries)

Block-Banded

matrix

Threshol.) ivoting
and pivotal

tolerance

Random Access file

Mat ix of the form:

(Where the shaded area indicates non-zero entries)

Threshold pivoting is a row interchanging strategy controlled
by a pivotal tolerance parameter u. The u parameter is a

real numbersuchthat 0 <u<1 .If A= (ai,j) ,and

3 § = r_n;xi- la; jl , then there is no row interchanging,

otherwise interchange rows i and m where m = max. laij'
i>i

Mutlti-record mass storage input/output file which allows the
user to create, access and modify its records on a random
basis without regard for their physical positions or internal
structures. (They are called direct access files in IBM

nomenclature.)

Sherman-Morrison Updating Formula for A=B + uvT.

A=l By (i + vTBu) v TRl

Matrix norms: IAJl = max. ‘ z 'aijl]
i J

NN
j i

llAll> = max. { (= azij) 1/2}
i *j

Condition Number of a nonsingular matrix

= [-l =
Km(A) = "A"m "A “m m=1,2,..e0
Growth (growth factor) The largest absolute value of the numbers generated by the
of a reduction reduction process

process

4.0 DISCUSSION

In this section, we highlight the special features of our algorithms. In sections 4.1 to 4.4,
we shall discuss Algorithm I, which reduces the coefficient matrix to an upper triangular
matrix and solves the problem by backward substitution. Then we shall remark on
FORTRAN implementation and compare the efficiency of this algorithm with the ap-
proaches outlined by Bjorck and Dahquist (ref. 6), and Reid, (private communication).

In sections 4.5 and 4.7, we shall discuss Algorithm II, which employs a variant of the
Sherman-Morrison updating formula. Then we shall remark on its FORTRAN implementa-
tion, and the numerical stability of our particular application of the Sherman-Morrison

Lpdating formula.

4.1 ALGORITHM I (SUBROUTINE ETCGP)

For the convenience of discussion, we shall firstly assume the coefficient matrix A to be

dense. We shall show how the algorithm can be modified for a block-profile system.
We shall first illustrate the algorithm with a 3 x 3 block system, and assume no row inter-
changing is nccessary. In this case, the algorithm yields Crout’s LU decomposition. The LU

factors can replace the original coefficient matrix A on disk. Assume, graphically. A is

stored on disk as in the following tigure.

ﬂn Az A3

Figure 2.—Original Matrix

In tae first block pivotal siep, we form the LU factorization of Ay, A= L,U; and
replace Aj1.A12,A13.A>1,A3 asin figure 3.

_ . 4

LU, LA L7 A3
-1

AU Ap A3

AUyl A

[A31¥1 Az 33 _

Figure 3.—After First Block Pivotal Step

Fori=2,3, write L; 1A; as Uy;, and U; 714y as L.

In the second blocl: pivotal step, replace A22 with A22 - IQlUI 9, the decompose the
resultant into its LU factors, and complete the rest of the second block pivotal step as
illustrated in fig. 4.

LY, U2 Uis
LUy U Uy
— ST
Ly Ay A Ly (L2v2) Ly (A23-L21Up3)
Ayy-Lo U
12
L3 A3y Az 2l
L3, Uy'(A32-1L3,U12) A33 |

Figure 4.—Second Block Pivotz! Step

Write L5(A53-Ly;U;3) as Usz, and U2(A32-L3]U12) as L. In the churd pivotal step,
we replace A33 with A33 - L31U}3 -L33 U23 and decomplse the resultant to its LU
factors. The third block pivotal step can be illustrated by fig. 5.

_ LU, U2 Ui3
LU Uy Uy
Ly LU, Uyl — [tz L2U; Ua3
L L A
L3 32 33 (L3v3)
L3 L3,
_ A33-L31U13-L32Us3

Figure 5.—Third Block Pivotal Step

Thus we have reduced the matrix A to an upper triangular matrix, and thus equation (1) can

be solved by backward substitution.

Now we shall explain our row interchanging strategy, which is commonly known as
threshold pivoting. A real number g is chosen so the 0 < u < 1. We perform row inter-

changing only when a3 < u + Max. Iajil .
j>i

Note that if u = 0, there is no row interchanging at ali; if u = 1, we have the regular row
interchanging. We shall illustrate the application of this row interchanging strategy to a

2 x 2 block system:

(i]
Uy _ 0 a)y
A2l a3 232
241 42

Figure 6.—First Pivotal Step of a 2 x 2 Block Systemn

In the first pivotal step, we first decompose A intoits LU factors with pivoting, i.e.,
A1 =L U Py. then replace Ay, with Ll'lP]Alz.

Let Ujy = L]°1P1A]2. Now suppose

1
o | urt]>w s max. {|agy| , Jaag| } =0+ fasi

We have to interchange row 1 of Uy with row 1 of A?,l , then eliminate uyy and agy with

a3 as the pivot, the resultant is as follows:

= -
az| a3;
0 U2
0 Uy
0 _

0 a7

Now suppose
Jugg| <w - max {|uja| . fagal} = #*|ass]

We have to interchange tow 2 with row 2 of Ay, and eliminate uy4 and uy with a4, as a

pivot, the resultant is:

@31 239
0 a4)
0 0

Q 0 —

After the first block pivotal step, the disk storage should be as follows:

|_ LU, | LA
Multipliers and l Ayr
pivoting information

(In the formal description of our algorithm, we shall write LiFjAjpas Uj 2, and the disk
record that stores the multipliers and pivoting information as indicated in the previous

diagram L5 .)
The following is a formal description of Algorithm I:

Algorithm |
Let A be an n x n block system
Fori=1step 1 until ndo
Forj=istep | until n do
Read Aij into core
Fork =1 step 1 until i-1 do
Read ij, Ukj into core

Modify I:Uki‘l by repeating the row operations done to [:Ukz.l.

Ajj Agi

If there is row interchanging between | Uy |, rewrite Ukj on disk.
Agi

10

Enddo

ifj=i
A = LiUR;
Else
Ay =LAy
Endif
RewriteAj; on disk (rename Aj; s U,
Enddo

Forj=1step 1 until ndo
Read A,-j into core
Fork=1step | untili-1do
Read ij, Uy into core

1Y . . Uk
Modify by repeating the row operations done to
i ik
Uk
If there is row interchanging between ,srewrite Uy, on disk.
Ajk
Enddo U
Eliminate Aji from 1| with row interchanging if necessary.
Aji
Store multipliers and pivoting information as Lji on disk.
Enddo
Enddo

Repeat the same row operation to the right-hand side, and solve for x by backward sub-
stitution

Not: :

1. It e is no interblock pivoting, it requires two disk read/write’s in the innermost

do-loop; otherwise, it requires three.

to

Nowhere in the algorithm do we assume non-zeros in the diagonal blocks. Although
nonzeros in the final upper triangular rorm will indicate matrix singularity, and back-

ward substitution will be impossible to carry out.

"

Now we shall show how the algonthm can b= modified for a block-profile system.
Define an n x n mairix K such that:

K(i. })= 0 indicates the (i, j)block is a zero block

K. P# 0 indicates K(i, j)is the location of the (i, j)block (a nonzero block) on disk.

For example, for the following block-profile matrix,

Where the shaded area indicates the nonzero blocks, its corresponding K matrix can be

-
I 2
3
4 5
6 7 8 9
10 11

We call the K matrix the profile matrix of the matrix A.

In subroutine ETCGP, we scan the profile matrix to determine the beginning and end of
each block row and block column, and change the “ends” the do-loops in the algorithia
accordingly. To h.adle the “fill-in’s”’of the zero blocks (i.e., if the (i, j) block is originally

a zero block. but the reduction process turns it into a nonzero block), we find the maximum
entry of the original K matrix, m, aad set K(i, j)= m + 1, update m by adding 1 to it, and
revise the information on the beginnings and ends of the i-th block row and j-th block

column il necessary.
4.2 REMARKS ON FORTRAN IMPLEMENTATION OF ALGORITHM 1

1. Storage of the multiplieis and pivoting information

Suppose the i, j biock is a nonzero block that is njxn;, and i>>j. The number of words
in its corresponding record on disk is 2*(ni*nj)+nj+1 Before the j-th block pivotal step, the
first 2x("i*“j) words stored the entries of the (i,j) block, and the last nj+l words are zeros.
After the j-th block pivotal step, the first 2x(n; *nj) words store the multipliers used, and

the last njfl words store the pivoting information. We can consider this record as consist-

12

ing of two separate arrays: an array of complex numbers, A(n; .nj), and an array of integers,
l(nj+l). In the 2 x 2 block system we used to illustrate the threshold pivoting discussion,
after the first pivotal step, the (2.1) block of fig 6., that is A5 . is stored as an array of
complex numbers, A(2.2), as

FUn/“3|

ag1/a3)
Up2fag;

{_U::/w

-

and the pivotal information is stored in the integer array, I(3), as

2
3

The two arrays are packed as one record on disk.

e matnix A stores the actual multipliess used in the reduction process, I(1)=1 indicates
the urst row of A~ interchanged with row I of the upper triangular matrix U before the
first column of A~y is eliminated. 1(2)=2 indicates tie second row of A,y interchanged with
row 2 of Uy before the second column of Asj is eliminated. (3)=1(D+U2>0 indicates
there is interblock pivoting between the first block row (the pivotal block row) and the
second block row. If there is no interblock pivoting in this step. 1(1)=0. and I{2)=0, thus
13)=0. As it is obvic us from this example. HK)=0 indicates that no row interchange is
needed to eliminate the k-th column of the (i,j) block. I(kK)=m>0 indicates that the m-th
row of the (i) block is interchanged with the k-th row of the corresponding upper triang-
ular matnis Uj betore the k-th column of the (i Ihlock is ehiminated, and

l(nj+l)=l(D2 . .+l(nj). It l(nj¢i)=0. it indicates that there is no rterblock pivoting
between the i-th and i-th rows; if I(nj+| >0. it indicates that there is interblock pivoting
between the i-th and j-th block row.

2. Optimization of the Innermost Loop

As indicated by the 3 x 3 block system in section 4.1, if there is no interblock pivoting, the

most expensive operation is the matrix operation

13

In subroutine ETCGP, this operation is carried out by a Compass subroutine CCSMAB
which is about five times faster than straight FORTRAN. Even if there is interblock row

pivoting, we still can take advantage of CCSMAB. Consider the situation in the innermost
do-loop in the description of Algorithm 1. We have the following blocks in core:

If there is no pivoting between the i-th and j-th block row, the operation can be repre-

sented by the following equation:

Uy U
T B! B
Aii Aii
where L is such that
1 0
Ll
Lik 1

If there 1s pivoting between the i-th and j-th block rows, then the operation can be repre-

sented by the following equation:

where P is that permutation matrix chat interchanges the rows and L is such that

-
taep[® °

14

We can write

Theretore
L -1
A
L=1° I
°ML0 |
Also writ2
Us.:
kj
e [79] -
Theretore
-l‘
Lo Ukj

A — A
Thus in ETCGP, we compute Ukj = Lo“Ukj then use CCSMAB to compute Aij - MUkj .
O . ol .
Note that M is just the lower block of P Ly and can be computed quite efficiently by
1

forward substitution. (The following describe the compution Mand U = L,j'l Ukj .
M would overwrite Lik- and U would over write Ukj' We shall call Lik* M and Ukj' U and

the actual row and column dimension of U, NR, and NC))

For m=2 step 1 until NR do

It lm>0
k=ltm)
For h=1 step 1 until NC do
m-1
Utm. by = Ui, b = 32 MUk, s*Uts,)
s=1

Enddo

15

For h=1 step 1 unti! m-1 do
M(k.h)=0
Enddo
Else
{no operation)
Endif
Enddo

3. Pivotal Tolerance
At this point, we cannot give any theoretical guidanc: on the choice of the pivotal tolerance
u. Experimaentally, u = 0.001 proves to be satisfactory. In ETCGP, we store u in a labelled
common block

COMMON/ETPIVOT/U
and U is set to 0.001 by at DATA statement. The user can reset the value of U by any ex-
ecutable statement before calling ETCGP.

4. Monitoring of Stability
ETCGP keeps track of the “growth” of the reduction process (which is the largest absolute
value of all the numbers generated by the reductic 1 process). Our motivation for keeping

track of the growth is explained in section 4.3.

ETCGP also generates an extra right-hand side row ‘vhich is the row sum of the coefficient
matrix A. It subtracts (1.0,0) from each element in the solution of tF 5 extra right-hand side.
The resultant gives some indication of the “smaliness” of the residue Ax-b of the actual

problem.
4.3 NUMERICAL STABILITY OF ALGORITHM 1

Reid (ref. 9) and Wilkinson (ref. 10) have analyzed the stability of the . ‘gular Gaussian
elimination. If L and U are respectively computed lower and ur+~1 riangular factors of A,
the A, L and U are related asfollows:

A=LU+E
with E=(ei.j)and Iei.j|< 301l *m*exg
where m is the order of A, and ¢ is the machine pr. _ision, (:n CDC cquip:aent, ¢ = lO'M).

g is the growth of the reduction process.

ik

Reid and Wilkinson analysis cannot be extended in any obvious manner to give a practical
bound for E for Algorithm 1 of this document. The best we can do at present is the
tollowing: - - - - - -1, - -1,- -
TN A =My I M oMM M e MM T E, + MOTE
where M; is the matrix that performs the ith block pivotal step

E; = ("kll) Ieklil < 3.01 * e * g with g; being the growth of

the tirst ith block pivotal step.

The main difficulty is due to the tact that we do not use the same pivots for eliminating
the subdiagonal elements in the same column. Thus

M7 IS MTTE; = for i=1.2....M
whilst equality holds for the above expression in the regular Gaussian elimination. However

cach block pivotal step the process of eliminating the lower triangular elements of \;. ; from

Ai] Aiier | oo oo | Ain

and the process of elimination Aj, ifrom

Uil Yiien oo in

Aj‘ i AJ- i+ AJ. n

for 1<) <n are regular Gaussian elimination. Thus the “growth ™ of Algorithm 1 at least
gives the local stability of these substeps. The norm of the difference of the computed solu-
tion trom the actual solution give a realistic bound for the norm of E. because the actual
solution \ satisfies the equation Ax= b, the computed solution y satisfies the equation

(A + E) =h.

Thus

Ax=(A+Ew

At V= ly

ME 1< HA S Il - vl

In all our test problems
-t > ot

17

4.4 COMPARISON OF ALGORITHM | WITH OTHER APPROACHES

Bjorck and Dahlquist (ref. 6) and Reid (ref. 8) have proposed approaches to the problem of
solutions of large dense linear systems. Bjorch and Dahlquist's approach follows.

The matrix is partitioned into block rows:

with the requirement that a minimum of two block rows can be held in core simultaneously.
The first block pivotal step can be described as follows:

. Read Ay into core and reduce it to (.7\‘ | with reeular Gaussian elimination.

2. Forj=23. . .aread Aj into core reduce

A 1 A 1

to
Aj A

with row-interchanges when necessary, and write Ai back onto disk.

3. Write Al back onto disk.

The other pivotal steps are similar,

Reid proposed the same data structure as we do. His finst block pivotal substeps consists of

the tollowing substeps to be performed fori=23.. . ..

A
il

1. Read into core the blocks and apply normal Gaussian elimingtion, overwnting

18

eliminated elements by multipliers and using row interchanges. Note that fori > 3

the modified block A\ is upper triangular and advantage may be taken of this.

A .

2. Forj=2.3.. .nread in blocks (l") modify trem using the multipliers and interchanges
Ajj

. [AN . .
held in and then write them back to disk.
Aj

3. Write modified block A;) to disk.

The remaining block pivotal steps are performed similarly. Operations on the right-hand

side vector may be performed subsequently using the stored multipliers or at the same

time as the elimination.

Reid has proved that given the same amount of core, the block row storage scheme is only
efficient for matrices of order of less than 300. For large matrices, Algorithm I requires the
least amount of disk input/output. The following table summarizes the features of the three

approaches.
No.
Approaches Features disl? a(c:)gess
Dahlquist two block rows are needed in core m?

4 —
and Bjorck N2
Reid four blocks are needed in core 3

four disk read/write’s in the .3—2 m
, 3\IN
inner most do-loop
Algorithm | three blocks are needed in core 3
2/ m
(without pivot- t+- y disk read/write’s in the 3(3%‘)
ing) inn most Jo-loop
Algorithm 1 three disk read/write in the inner
sJ3/ m\3
(with the worst most do-loop T\ =
possible case of - \/ﬁ
pivoting)

* m 1s the order of the matrix, and N is one half of the number of words
available in core.

19

4.5 ALGORITHM Il (SUBROUTINE ETCSM)

Algorithm 1l is designed for coefficient matrix with a special sparsity structure:

— %
X X T
X X X
XXX
X X X
XX XX
A= X XXX
X XXXX
X X XXX
X X XXX
| x X X X]

We can write A = B+ D where B is 2 banded matrix:

—
Fx

XXX
XXX
XXX
X X X
B= XXX
X XX
X X X
XXX
X X

aad o

and D = A -B:

P I A A A
R AR K

*¥The x’s are single elements

20

D can be writtenas D = UVT, where U and vT are as follows:

T ooloooc oo
Vi=looo0oo0loo0oo000

[
"
[¢ ¢ 2 % xC © O Of

Jx % x % x O ©C O 0O O}

Thus to solve a x = b, we apply the Sherman-Morrison updating formula

x=ab=(B+UVT) b

0 q
=3 lp-B 'u(1+vTB“U) vIp-lp

The algorithm I can be described as follows:

1. Reduce B to an upper triangular matrix with Algorithm I.

Repeat the row operation in ! to [b|U]. Solve for B [z,y] = [b,U] by backward
substitution.

Compute [S,T] = VT [z,y].

Decompose (I+T) into its LU factors with row interchanging.

to

Solve for w in the equation (I-T) w=8 by forward and substitution.

o kW

Compoute x=S-T*x.

21

4.6 REMARKS ON FORTRAN IMPLEMENTATION OF ALGORITHM 11

In this section, we shall use the notation we have defined so far.

1. Storageof Uand V
We partitioned U comformable to the partitioning of the coefficicnt matrix A:
U

U,

r4

Un

and store them on disk in the same block which stores the corresponding partition of the
right-hand side.

-
by | U
b | Uy
Pn | Un)

Since the matrix V only consists of ones and zeros, we do not store V explicitly.

We use two-dimensional array:
INTEGER N(MR.MC)

where MR 2 the number of block cciumns that contain element columns in the matrix
D=UVT, and MC 2 2 + the total number of columns in the matrix U. The contents of N are
defined as follows:
Letiydy.. ... be the indices of the blocks that contains columns of D, and then

N(1.D)=iy

NQ2.1)=is

22

Suppose for j=1,2. . . all (ij,m) blocks for some m > k] contain the nonzero elements of
D, then

N(1,2)=ky

N(2,2)=ky

Suppose forj=1.2 ..., D contains the following columns of the ij-th block:
m; | 9. T G, with m; § <mj’2<. . '<mj,n(j)'

Then

N(l,3)=m1,l, N(1,4)=ml’2, ceey N(l,n(l)+2)=m1’n(1), N(1,n(1)+3)=0
N(2,3)=m2,l, N(2’4)=m2,2’ ..., N2,n(2)+2)=1» nQ2y N@2,n(1)+3)=0

It is important that N(j,n(j)+3) be set to zero, so that the program know the m; nG) is the
last column from the ij-th block column to go into D. The following 3 x 3 block system

will illustrate our scheme:

XXX
XXX
XXX

»
”
td

XX
XXX
XXX
XXX
XX

XX

XXX
XXX
XX X

B B A]
I A B R

23

E I A R
E I A
R I

N(1,1)=1 meaning the first block column contains columns for D

N(2,1)=2 meaning the se.ond block column contains columns for D

N(1,2)=2 meaning in the first block column, only (m,1),m = 2 contains columns for D

N(2,2)=3 meaning in the second block column, only (m,2),m =3, contains columns for D

N(1,2)=3,N(1,4)=5,N(1,5)=0 meaning only the third and fifth columns of the first block
column belongs to D

N(2,3)=3,N(2,4)=0 mearing only the third column of the second block column belongs
toD

2. Computation of VT(z,y) (Step 3 of Algorithm I1)
Since V is not store d explicityly, we use the following:
(Let NB be the number of block columns that contain cci.imn of D, L be the total number
of nonzero columns of D, and the two-dimensional array N, is as defined as before, and
NC=L-number of right-hand sides.)
g=1
For1=1 step 1 until NB do
k=N(,I)
Read Tk=bk,Uk into core
For j=3 step 1 until LU+2 do
m=N(. j)
If m=0, then exit do-loop with index j

24

Otherwise
S(s,h)=Ty(1n,h)
Enddo
g=g+1
Enddo
Note that the array S contains vr(z,y)

4.7 NUMERICAL STABILITY OF ALGORITHM 11

Suppose A and B are matrices of order n and are related in the following manner:
A=B+UVT (2)

v here U and V are nxr indtrices with r <€n, and both U and % are of rank r. Then it follows

from a variant of the well known Sherman-Morrison formula (ref. 6) that
At =B By + vTE Y VTR 3)

where I is the identity matrix of order r. Assume B is well-conditioned and has been
decomposed into LU factors B=LU, then equation (3) prevides a very efficient method to

solve the linear system

Ax=b.)

However, a general concern when using equation (3) is that the matrix (lr +VTB'IU)
may be ill-condicdoned. In this section, we prove a sufficient condition for the veell condi-
tioning of (lr +vTgl C)

Before we proceed, we state the usually accepted definition of the condition number of a

matrix and an inequality related to 1t.

Let A be an nxm, n2n, matrix with linearly independent columns, then the conditional

numker of A, denoted by k(A) is such that ”T‘r:' AxI
k(A) = —————
mm.] Ax]l

IIxli =1

25

It is also true that
ka) = lall, -latl, (5)
where At = (ATA)'l AT, the generalized inverse of A.

Let R(A) be the range of A. Inequality (5) is obvious from the fact that:

min min DAxt_max It _ %ol _ JAAX] max %yl

lxliy # 1 MAXI2 ™ it o Wl IiFo NAXE WAxl | JAxgh o lyli=1

Further, if A is nonsingular, equality will hold.
We now prove .t following:

Theorem 1. If A and B arc related as in equation (2), and A and B are invertible, then
(1 - vTB'IU) =ytaBlu (6)
(I-VTB‘IU) =vTpla (VT)+ (1)

+ - + -1
where U = (UTU) T , and (VT) =V (VTV) are the
generalized inverses of U and V, respectively.

Proof: Note
A = B-UVT
= (-uvTel)p
agl = (ln-UVTB'l)
2Aply = (U-UVTB'IU)
~ABly = (Ur-vTB“U)
- (1-vTB) = vtaply

Thus we have proved the validity of equation (6). The proof of equation (7) is similar

26

The following equations are direct derivations from equations (6) and (7):

\
(1-vTeluj Tt = u+Baly 8

(I-VTB'IU) -1 - VTA'IB(VT)"' 9)

Let 2) = (“U":'||'~'+“2)2 - =(" VT”z'“ ("T)+i|2)'2’23 = "U"2'||U+"2'“VT“‘II(VT)+||2

Combining equations ((6). (7), (8). and (9) with the tact that ICDli; < ICil,IIDI,

for any two matrices C and D,

O R R T

k(1-VIBTU) < min. {2,,8,, 2%} k(A kB, (10)

Inequality (10) states that if A and B are well-conditioned, and either U or V is well-conditioned
then 1+VIB 1y is well-conditioned.

Inequality (10) 1s useful because "U:_," , 'IU+II2 . "VT" and II(VT)+II can be
computed quite economical'y and the physical problems that yield matrices A and B usually
give some indication of their vell-conditioning. The well-conditioning of B and (1-vIiply)
ensures that the solutions of Bx, = b

By = U

(1+vTB ly)z = vIx,
can be computed with satisfactory accuracy. Thus the solution of Ax=b via equation (3)

can be computed with satisfactory accuracy (11).

In our particular application of the Sherman-Morrison updating formula. vlvisa permu-
tation matrix, thus "V+":' "V": = 1. Therefore as long as A and B are both well-condi-

tioned. Algorithm 11 is alway's stable.

27

5.0 COMPUTER PROGRAM USAGE

5.1 MACHINE AND EXECUTION ENVIRONMENT

The algorithms described in the previous section are programmed as a FORTRAN sub-
routine library (which we call OCSLIB out-of-core solution library). The subroutines are

written for the FTN compiler of the CDC computers.
5.2 OPERATING SYSTEM

This subroutine library is designed for NOS 1.1. Its compass subroutines are optimized for
the CDC 6600.

5.3 TIMING
Timing is hardware and operating system dependent. The following formula gives a very
rough estimate for the timing:
CPsecond = 1/2+n» pzt k
where n is the order of the linear system, and p is the band-width and k is machine-

dependent. To estimate k. make a sample run and compute k using the above formula.
For the Cyber 175 k=8 x lO'.5

5.4 FILES AND FILE FORMAT

OCSLIB uses at least one random access file. OCSLIB has each block of the coefficient

matri as a record. If the block is n; x n;. then the record length is ?.#ni*nj + n, +1.
5.5 USAGE
5.5.1 USING ALGORITHM I (SUBROUTINE ETCGP)

We recommend the following precedure:

Step I Define the block system of the coefficient matrix: choose a sequence of positive

28

integers n.na. ... ny to partition the matrix into a block system like fig. 1 of section
1.0. so that the block A, jis n; X ny. The partition is to be chosen so that at least three

blocks can be held in core simultaneously.

Step 2. Define the block profile of the matrix: define an array
INTERGER INDEX (M M+1)
such *hat M2 N_and INDEX(@, j)=0 if the Ai,jis a zero block.
INDEX (1,j=20 if the Ay jhas at least one nonzero entries.

there we consider b =A; Nyp-fork=12.... . N)

Step 3. Write the augumented matrix on disk for ET(‘GP.nk (k=1.2,... N)at a time.
In this step we provide a subroutine ETBMGEN to write a block row of the augmented
matrix on disk in a format that is acceptable by ETCGP. Thus we shall describe the usage
and argument list of ETBMGEN.

COMPLEX WMXR MXC)
INTEGER INDEX(MT MT+1).JN(NT2).NDBLK(NT1) (where NTI=NTBLKS+1
NT2>NTBLKS**2 + NTBLKS+3)

-

DO 10 1=1. NTBLKS

(Code to generate the i-th block row of tie augmented matrix.)

CALL ETBMGEN(INTAPE IN MT NTBLKS.WORK .MXR MXC)
10 CONTINUE

29

The argument list for ETBMGEN is described as follows:

CUE- QUTINE ETBMGENC(I NTAPEINDEXMT o INyNTBLKSyNDBLK ¢ WORK »
§ 4XR. MXC)
CESHSEE 2Ry SELER L E LS &R

PUROS ™ TO WRITE THE NON-ZERC BLOCKS OF A BLOCK ROW OF MATRIX
IN ETCGP FORMA1

ARBUMEN™ LIST

I = BLOCK ROW INDEX
NTAPE - OUTPUT DISK FILE
CUTPUT -~ ARGMENTED MATRIX IN ETCGP FORMAT
INDEX - 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX
ROW CIMENSION = MT, COLUMN DIMENSION = MT+l
INDEX(1,5)=0 (I,4)-TH BLOCK IS ZERO
INDEX(I+J).6GV.0 LOCATION OF (I,J)-TH BLOCK ON NTAPE
“if -~ ROW DIMENSION OF THE ARRAY INDEX
JN — INTEGER ARRAY FCR THE RANDOM ACCESS FILE NTAPE, AT LEAST
(NTBLAKS+NTBLKSENTBLKS+3) MANY WORD'> ¢ONG
NTBLKS - NO. OF BLOCK ROWS
NDBLK - ARRAY TO STORE BLOCK SIZES,NDBLK{NTBLKS+1)=NO.OF RHS
WORK - (2 UIMENSIGNAL TO USER)
INPUT ARRAY FOR THE NON-ZERC BLOCXS OF THE I-TH BLOCK ROW
MXR - ROW DIMENSION OF WORK
MXC - COLUMN DIMENSION OF WORK

NOTE SUSROUTINE ETCGP ASSUMES ALL THE NON-ZEROBLOCKS TO 6t
DENSE BIF.(KS. (SEE THE SAMPLE CALL ING PROGRAM)

3 XaKaXaKaXaXalaR il ol a e R aN o N e N uNaNa N o N o N o N o NaXa Ko Nal el

SRS VEREEARALEASERES RIS VSR EL XSS RSSEVERS S L2 P ER LS LR R ERE LR LSRR IE S R EREE

ETBMGEN alters the contents of the array INDEX.

Step 4. To solve the linear system via ETCGP
COMPLEX WORK (LW)
INTEGER INDEX(MTMT +D.NDBLK(NTD)

CALL ETCGP(NTAPE.INDEX NTBLKS.NDBLK WORK.LW,ITAG)
The calling sequence of ETCGP is as follows:
SUBROUTINE ETCGP(NTAPE. INDEX NDBLKS NDBLK. WORK.LWORK.ITAG)

30

SUBROUT INE ETCGPINTAPE INDEX sNTHLKS ¢NDBLK ¢WORK s LWORK » ITAG)
OPTIONKEEP =OFF, INLIST=0ON
CHEX RSB ERSEEEBEBRIRE SRR E I ELN SRS S RSB E UL BN RRE LR FEXEAREE KRR EBSRES

PURPOSE MAIN SUBROUTINE
REDUCE MATRIX TO AN UPPER TRIAGULAR MATRIX - CALL ETCGPRM
REPEAT ROW OPERATION ON RHS — CALL ETCGPFS
BACKWARD SURSTITUTION - CALL ETCGPBS

ARGUMENT LIST
NTAPE - INPUT/UUTPUT DISK FILES FOR MATRIX
INPUT - ORIGINAL ARGMENTED MATRIX
QUTPUT — ROW OPERATIONS PERFORMED AND UPPER
TRIANGULAR FORM AND SOLUTION

INDEX - 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX

ROW DIMENSION = NTBLKSy COLUMN DIMENSION = NTBLKS+1

INDEX(I+J)=0 (I,J1-TH BLOCK 1S ZERO

INDEX(Y¢J)oGT.0 LOCATION OF (I,J)-TH BLOCK ON NTAPE
NTBLKS —~ NO. OF BLOCK ROWS
NDSLK = ARRAY TO STORE BLOCK SIZES,NDBLK(NTBLKS+1)=ND.OF RHS
WORK - WORKING ARRAY (COMPLEX TO USER)
LWORK — LENGTH OF THE ARRAY WORK REGARDED AS COMPLEX

LWORK.GE. (NTBLKS*®2 ¢ 3=NTBLKS + 34MXB + 3#N)

WHERE MXB = (MXBLK%*%2) + (MXBLK+2)/2 WITH MXBLK = THE

MAXIMUM OF ALL THE ENTRIES OF THE ARRAY NDBLK, AND WHERE

N I35 THE ORDER OF THE SYSTEM
ITAG - CUMPUTATIONAL PATH

I1TAG=1 REDUCE MATRIX TO UPPER TRIANGULAR FORM AND

SOLVE AX=8
ITAG=2 REDUCE MATRIX ONLY
ITAG=3 SOLVE AX=B ASSUMING A HAS BEEN REDUCED

[aXsEakaXalaEaEalaNalalslaN el aN el e ol aNaNa N e Ra o ol o]

EFERBTSEERFERER B RS XB RS P RRERE B ARE R LR LSS SRR BEESE R EBER SRS R EE B R k¥

{The array WORK should be equivalenced to the arrays W and JN as follows:
EQUIVALENCE (WORK W) (WW(1 MXC+1),IN)

Step 5. Read the solution from NTAPE. In this subroutine we provide a subroutine
ETRDSOL which has exactly the same calling sequence as ETBMGEN. Its usage is described
below:
DO 10 I=1 NTBLKS
CALL ETRDSOL(NTAPE INDEX MT ,NTBLK,W MXR MXC)
(code to process the part of the solution corresponding to the i-th block row)
10 CONTINUE

31

5.5.2 USING ALGORITHM 11 (SUBROUTINE ETCSM)

We recommend the following procedure:

Step 1. Same as step 1 of section 5.5.1.

Step 2. Same as step 2 of section 5.5.1, except call subroutine ETSMGEN
instead of ETBMGEN. The argument list of ETSMGEN is as follows:

SUBROUTINE ETSMGEN(INTAPE . INDEX yMT 3 INJNTBLKS sNOBLK,WORK,y
[MARMXCoNB,MLB,LB,LY)

R ERRB LR EE * 1 3333 * . 2 J SR RR SRS E:

PURPOSE WRITE THE MATRIX IN A FORM ACCEPTABLE 8Y ETCSM

ARGUMENT L IST
1oNTAPELINDEXyMT o IN¢NTBLKS sNDBLK yWORKyMXRMXC - SEE SUBROUTINE
ETBMGEN
NBoMLB LB, LU GIVE THE SPARSITY STRUCTURE QF THE MATRIX O
NB ~ DIMENSIONED AS
INTEGER NB(MLB,LU+2)
NB(I,1)=K, THE K~TH BLOCK ROW CONTAINS THE COLUMNS OF D
NB(1,2)=Jd, ONLY THE BLOCKS (M,K)¢M.GE.J CONTAINS THE COLUMNS
GF C
FOR T.GE.3¢ NBiI,T)=Sy THE S~COLUMNS OF THE K-TH BLOCK COLUMN
IS IN O. 1IF D ONLY CONTAINS H COLUMNS OF THE K-TH BLOCK CDLUMN
THEN SET NB(I,H+2)=0
MLB - RUW DIMENSION OF NE
LB - TOTAL NO. OF BLOCK COLUMNS THAT CONTAINS COLUMNS OF D
LU -~ TOTAL NU. OF NON-ZERD COLUMNS OF D

[aNaNuXalaYaXaNalalalalaNaNaNaNeRaNaRaRaNak ol

X2 R SRR EX IR EBEETRE SRR SRR RERR SRR ERERE LB EE LR XL S R RBE SR R KR ERK

Step 3. Solve the linear system via ETCSM. The argument list of ITCSM is as follows:

SUBROUTINE ETCSMINTAPE s INDEXyNTBLKS yNDB'.KoWORK ¢ LWORK» ITAG,

SKNByMLBoLByLU)
CEELERRR LSRR BEEEEER LR EERREE R B K REY KREEE RS * 2ee ¥ *o¥
[PURPOSE APPLY THE SHERMAN~MORR ISON UPDATING FORMULA TO SOLVE
c (BE+D)X=B, WHERE BE IS A BLOCKED BENDED MATRIX,
C AND D ONLY CONSISTS OF A FEW COLUMNS OF NON-2ERCGES.
[+ THE NON~ZERD COLUMNS GF D IS ASSUMED TO BE STORED WITH 1HE RHS.
[
C ARGUMENT LIST
c NTAPE ¢ INDEX ¢ NTBLKS yNDBLK ¢ WORKyLWORK ~ SEE SUBROUTINE ETCGP
[ITAG - THE VALUE OF ITAG IS PASSED ON TO ETCGP
[KNBoMLB,LB,LU GIVE THE SPARSITY STRUCTURE OF THE MATRIX D
C KN8 — DIMENSIONED AS
C INTEGER KNB(MLB.LU+2}
c KNB(I,1)=Ks THE K~TH BLOCK ROW (ONTAINS THE COLUMNS OF D
% KNB(I,2)=Js ONLY THE BLOCKS (M¢K)sM.GE.J CONTAINS THE COLUMNS
Cc OF D
[FOR T.GEe3y KNB(I9T)=S, THE S~COLUMNS OF THE K~TH BLOCK COLUMN
[1S IND. IF D ONLY CONTAINS H COLUMNS OF THE K-TH BLOCK COLUMN
C THEN SET KNBil,M+2)=0
[MLB -~ ROW DIMENSION OF KNB
[« LB - TOTAL NO. OF BLOCK COLUMNS THAT CONTAINS COLUMNS OF D
C LU - TOTAL NO. OF NON-ZERO COLUMNS OF D
C
CEER kAR R RN KA REREEEERRERBEBERE XN REEERRFRBLERE R RRER R REE PRE S R ER YR KK

32

5.5.3 USING THE ITERATIVE REFINEMENT SUBROUTINE (ETCIT)

ETCIT requires the original matrix and the output matrix from TECGP to be in different

files. The usage of ETCIT is obvious from the explanation of its argument list:

[2332222 22321513

C
C
C
C
C
C
C
C
C
c
c
C
c
C
C
c
[
C
C
C
C
C
C
C
c
<

SUBROUTINE E

SWORK o LWORK)

TCITINTAPE I, INDEXI¢NTAPEOQ, INDEXO,NDBLKyNTBLKS,

=¥k % * * SESEERRRE *

PURPOSE I7

ARGUMENT LIS
NTAPEI -

ERATIVE REFINEMENT

T
INPUT DISK FILE STORES ORIGINAL MATRIX

INDEXI — 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX IN

NTAPED -

NTAPEI (SEE EXPLANATION FOR THE ARGUMENT INDEX IN

SUBROUTINE ETCGP)

OUTPUT DISK FILE FROM ETCGP, STORES THE UPPER TRIANGULAR FORM
AND THE ROW OPERATIONS PERFORMED BY ETCGP. ALSO THE

SOLUTION FROM ETCGP.

THE FINAL SOLUTION FROM ETCIT WILL OVERWRITES THE SOLUTION
FROM ETCGP.

INDEXO ~ 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX IN

NTAPEOC (SEE EXPLANATION FOR THE ARGUMENT INDEX IN
SUBROUT INE ETCGP)

NTBLKS - NO. OF BLOCK ROWS

NOBLK -

ARRAY TO STORE BLOCK SIZES,NDBLK(NTBLKS+1)=NO,OF RHS

WORK - WORKING ARRAY (COMPLEX TO USER)

LWORK -

LENGTH OF THE ARRAY WORK REGARDED AS COMPLEX

LWORK.GE. (NTBLKS3%2 + 3&NTBLKS + 3sMXB + 3%N)

WHERE MXB = (MXBLK%®#2) + (MXBLK+2)/2 WITH MXBLK = THE
MAXIMUM OF ALL THE ENTRIES OF THE ARRAY NDBLK, AND WHERE
N IS THE ORDER OF THE SYSTEM

SSEEFEE RRE LR AR EBASEERE RS SR SR R KRR LA SR EBXE R R SRR AR R EE SRESEER R XS EE R SRR

P :‘)’ ‘\"'f‘ 'lllh‘l
1 .o . POOR

33

5.6 ERROR MESSAGES

5.6.1 ERROR MESSAGES FROM ETCGP

1. WORKING SPACE TOO SMALL, AT LEAST ***¥**$+xxxx* WORDS ARE
~EEDED RETURN FROM ETCGP.

2. WRONG CHOICE OF COMPUTATION PATH, ITAG SHOULD EQUAL TO 1,2 OR 3.

3. MATRIX SEEMED SINGULAR, EXIT FROM ETCGP.

5.6.2 ERROR MESSAGES FROM ETCSM

1. WORKING SPACE TOO SMALL, AT LEAST ****x*¥x&&xx* WORDS ARE
NEEDED RETURN FROM ETCSM.

2. MATRIX SEEMED SINGULAR, EXIT FROM ETCSM.

5.6.3 ERROR MESSAGES FROM ETCIT

1. WORKING SPACE TOO SMALL, AT LEAST **¥**#*xx&*x% WORDS ARE
NEEDED RETURN FROM ETCIT.

2. CONVERGENCE TOO SLOW, RETURN FROM ETCIT.

34

QOoOONOOaOOn0n

(oM oNe) aon

anon

5.7 SAMPLE PROBLEMS
5.7.1 SAMPLE PROBLEM 1

PROGRAM TGP(INPUT,OUTPUT, TAPES5=INPUT, TAPE6=0UTPUT, TAPES

THIS PROGRAM ILLUSTRATES THE USE OF ETCGP.

THE PROFILE OF THE MTRIX IS BLOCK TRIADIAGONAL.

THE SUBBLOCKS ARE 2 X 2 BLOCKS.

WE CALL THE RANDOM NUMBER GENERATOR TO GENERATE THE MATRIX ENTRIE
WE USE THE ROW SUM OF THE MATRIX AS OUR RHS.

COMPLEX W(1000),WwW(10,100)
INTEGER IN(10,11),NDBLK(11),JN(115),KN(110),NC(10)

NOTE THE W ARRAY SHOULD BE EQUIVALENCED TO WW
AND JN SHOULD BE EQUIVALENCED TO WW(1,MXC+l)
EQUIVALENCE (WW,W), (KN,IN), (JN,WW(1,12))

DATA KN/110*0/,W/1000*(GC.,0.)/

DATA NTBLKS/5/,NDBLK/2,2,2,2,2,1/

NOTE THE W ARRAY SHOULD BE EWQUIVALENCED TO WW
AND JN SHOULD BE EQUIVALENCED TO WW(1l,MXC+l)
EQUIVALENCE (WW, W), (KN, IN), (IN,WW(1,12))

DATA

GEMERATE INDEX ARRAY IN IN

NT1=NTBLKS
NT1=NTLBKS+1

NTM1 =NTBLKS-1
IN(1,1)=1

IN(1,2)=2
IN(1,NT1)=3

NS=3

DO3I=2,NTM1
IN(I,I-1)=NS»l
IN(I,I)=NS+2
IN(I,I+1)=NS+3
IN(I,NT1)=NS+4
NS=NS+4

CONTINUE
IN(NTBLKS, NTM1) =NS+1
IN{NTBLKS, NTBLKS) =NS+2
IN{NTBLKS, NT1) =NS+3
NS=NS+3

35

Qa0

an

O 00 000 o0

oo QO 0 o000

100

1C

11
101

FIND OUT HOW MANY NON-ZERO COLUMNS IN THE BLOCK ROW

D04I=1, NTBLKS

NC(I)=0

D04J=1, NTBLKS

IF (IN(I1,J).GT.0)NC(I)=NC(I)+NDBLK(J)

WRITE(6,100) ((IN(I,J),J=1,11),1I=1,10)
FORMAT(*INDEX ARRAY IN 3*,/,(1115))
GENERATE NTBLKS BLOCK ROW OF THE MATRIX

D0101 =1, NTBLKS
NC1=NC(I)+l

GENERATE NC(I)*20 RANDOM NUMBERS
CALL NOGEN(W,NC(I)*20)

2ERO OUT WW(.,NC1)FOR ROW SUM
ND=NDBLK(I)

COMPUTE ROW SUM
MC=NC(I)

D06J=1, ND
WW(J,NC1)=(0.,0.)

DO6K=1,MC

WW(J, NC1) =WW(J,NC1) *WW(J,K)

WRITE I~-TH BLOCK ROW FOR ETCGP
CALL ETBMGEN (I,8,IN,10,JN, NTBLKS, NDBLK,WW,10,11)
CONTI NUE

CALL ETCGP(8,IN, NTBLKS, N[BLK,W,1000,1)

TO RED SOLLTION FROM TAPES

DO11I=1,NTBL¥S

CALL ETRDSOL {7¥,{,’ v,10,UN,NTBLKS, NDBLK,WW,10,11)
ND=NDBLK(I)

WRITE(6,101)I, (#9(J,1),J=1,ND)

FORMAT(1X,15, *~T:. BLOCK SOLUTION®*,,/,(8E10.4))

STOP
END

36

OOOO0O0O0O0

QOO0

(sNoNy)

sNoNe

5.7.2 SAMPLE PROBLEM 2°*
PROGRAM TSM(INPUT,OUTPUT, TAPES5=INPUT, TAPE6=0UTPUT, TAPES)

THIS PROGRAM ILLUSTRATES THE USE OF ETCSM.

THE PROFILE OF THE MATRIX IS OF THE FORM A=B+D, WHERE B IS

BLOCK TRIDIANGONAL, AND D ONLY CONSISTS OF 2 NON~ZERO ROWS.

THE SUBBLOCKS ARE 2 X 2 BLOCKS.

WE CALL THE RANDOM NUMBER GENERATOR TO GENERATE THE MATRIX ENTRIES
WE USE THE ROW SUM OF THE MATRIX AS OUR RHS.

COMPLEX W(1000),Ww(10,100)
INTEGER IN(10,11),NDBLK(11),JN(115),KN(110),NC(10),NB(2,5)

NOTE THE W ARRAY SHOULD BE EQUIVALENCED TO WW
AND JN SHOULD BE EQUIVALENCED TO WW(1,MXC+l)
EQUIVALENCE (WW,W), (KN,IN),(JN,WW(1,12))

DATA KN/110°0/,W/1000*(0.,0.)/

DATA NTBLKS/5/,NDBLK/2,2,2,2,2,1/

GENERATE INDEX ARRAY IN IN

NT1 =NTBLKS
NT1=NTBLKS+1

NTM1= NTBLKS-1
IN(1,1)=1

IN(1,2)=2
IN(1,NT1)=3

NS=3

D031 =2, NTM1
IN(I,I-1)=NS+l
IN(I,I)=NS+2
IN(I,I+1)=NS+3
IN(I,NT1)=NS+4
NS=NS+4

CONTINUE
IN(NTBLKS,NTM1)=NS 1
IN(NTBLKS, NTBLKS) =NS+2
IN(NTBLKS, NT'1) =NS+3
NS=NS+3

DO5I =4, NTBLKS
NS=NS+*1
IN(I,2)=NS

DEFINE THE STRUCTURE OF D

NB(191)=2
NB(1,2)=4
NB(1,3) =1
NB‘114)=2

NB(1,5) =0
FIND OUT HOW MANY NON~ZERO COLUMNS IN THE BLOCK ROW

37

OO0

0O 00 Q00 00

QOO0 O 0O QG0

DO4I =1, NTBLKS
NC(I)=0
D04J=]) , NTBLKS
4 IF (IN(I,J).GT.0)NC(I)=NC(I)+NDBLK(J)

WRITE(6,100) ((IN(I1,J),J=1,11),I=1,10)

100 FORMAT(*INDEX ARRAY INs*,/,(1115))
GENERATE NTBLKS BLOCK ROW OF THE MATRIX

DO10I =], NTBLKS
NC1=NC(I) <+l

GENERATE NC(I)*20 RANDOM NUMBERS
CALL NOGEN(W,NC(I)*20)

ZERO OUT WW(.,NCl) FOR ROW 3UM
ND=NDBLK(I)

COMPUTE ROW SUM
MC=NC(I1)

DO6J =1, ND
WW(J,NC1)=(G6.,0.)
DO6K=1,MC

6 WW(J,NC1)=WW(J, NC1)+WW(J,K)

WRITE I-TH BLOCK ROW FOR ETCGP
CALL ETSMGEN (I,8,IN,10,JN, NTBLKS, NDBLK,WW,10,11,NB,2,1,2)
10 CONTINUE
CALL ETCSM(8,IN, NTBLKS, NDBLK,W,1000,1,NB,2,1,2)
TO READ SOLUTION FROM TAPES
DO11lI=1, NTBLKS
CALL ETRDSOL (I,8,IN,10,JN, NTBLKS, NDBLK,WW,10,11)
ND=NDBLK(I)
11 WRITE(6,101)I,WW(J,1,,J=1,ND)
101 FORMAT(1X,15,*~TH BLOCK SOLUTION*,,/, (8E10.4))

STOP
END

38

[0

10.

11

REFERENCES

Ehlers, F. Edward: “A Finite Difference Method for the Soluticn of the Transe ¢
Flow Around Harmonically Oscillating Wings,”” NASA CR-2257, January 1974.

Wratherill, W. H.: Ehlers, F. E.; Sebastian, J. D.: “Computation of the Transunic
Perturbation Flow Fields Around Two - and Three-Dimensional Oscillating Wing,”
NASA CR-2599, December 1075.

Weatherill, W. H.; Sebastian, J. D.; and Ehlers, F. E.: “The Practical Application of a
Finite Difference Method to the Analysis of Transonic Flow Over Cscillating Airfoils
and Wings,”” NASA CR-2933, December 1977.

Weatherill, Warren H.; Ehlers, F. Edward; Yip, Elizabeth; and Sebastion, James D.:
“Further Investigation for Finite Difference Procedure for Analyzing the Transonic
Flow About Harmonically Oscillating Airfoils and Wings,” NASA CR-3195,1979,

Weatherill, W. H.; and Ehlers, F. E.: ‘4 User’s Guide for A344 - A Prograr.: Using a
Finite Difference Method to Anulyze Transonic Flow Over Oscillating Airfoils,”
NASA CR-159141.

Bjorck, A.: Dahlquist, D.: “Numerical Methods,”” Prentice-Hall, Inc. 1974.

Calanan, D. A.: “4 Block-Oriented Sparse Equation Solver for the CRAY-1," Froceed-
ings un 1979 International Conference on Parallel Processing. Bellaire, Mich. August
27 to 24,1979,

Ehlers, F. Edward ; Weatherill, Warren H.; Yip, Elizabeth; and Sebastion, James D.:
“An Investigation of Several Factors Involved in a Finite Difference Procedure for

Analyzing the Transonic Flow About Harmonically Oscillating Airfoils and Wings, "
NASA CR-159143, 1979,

Reid, J. K., “A Note on the Stability of Gaussian Elimination,” J. Inst. Math Applics.
(1971) pp. 374-375.

Wilkinson, J. H., “The Algebraic Eigenvalue Problem,”” London, Oxford University
Press., 1965.

Wilkinson, J. H., “Rounding Errors in Algebraic Processes,” Prentice-Hall, 1963.

39

1 Report No 2 Government Accession No

NASA CR-159142

3 Recipeent s Catalog No

4 T.ue ana Subtitie

FORTRAN Subroutines for Out-of-Core Solutions
of Large Complex Linear Systems

5 Report Date
November 1979

6 Pertorming Organizat.on Cade

-

I Authortst

Elizabeth L. Yip

B Pertorming Orgenization Report No

BCS-40283

9 Pertorming Organszation Name and Adaress
Boeing Co- nercial Airplane Company
PO.Box .07
Seattle, Washington 98124

10 wiork Unet Ne

11 Contract or Grant No

NASI-15128

12 Sponsormg A, vN S
Langley Research Center
National Aeronautics and Space Administration
Washington, D.C. 20546

13 Type ot Report ang Pe- it Cuverea

Final Report

18 Sponsoang Agency Conte

15 Suppiementary Notes

Contract technical monitor: Robert M. Bennett

16 Abs‘ract

This document describes the design and usage of two main subprograms using direct
methods to sclve large linear complex systems, of the form Ax = b, whose coefficient
matrices are tco large to be stored in core. The first main subprogram is for systems
whose coefticient matrices are of a particular sparse structure, namely. the matrix A can
be written in the form B + D. where B is a block-banded system. and D has only a few
columns of nonzeros. Key elements of the algorithms used in the subprograms include:
the data structure, the strategy for preserving numerical stability, the adaptability of the

algorithms for dense systems as well as for block-profile systems.

17 Key Words (Suqggestert by Authoris) |
upper triangular ma.rix

threshold pivoting block-profile matrix
pivotal tolerance block-banded matrix

rank
Sherman-Morrison Updating Formula

18 Distibution Statement

19 Secunity Classit (of thes report

Unclassified Unclassified

20 Security Classit (of s page

21 No of Pages 22 Prce”

39

“For saiv by the Nationai Technical Information Service Springheid Virgrmia 22151

